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Abstract 
The integration of Artificial Intelligence (AI) in education offers new opportunities to 

address complex science concepts, yet its interaction with learning styles remains 

underexplored. Objectives: This study aimed to identify the learning styles of pre-service 

environmental science teachers and examine how AI-based instruction supports their 

understanding of electric fields. Using a mixed-methods design, 72 undergraduate students 

completed the VARK questionnaire, pre- and post-tests on electric field concepts, and 

participated in interviews. The findings showed significant improvement in conceptual 

understanding after AI-based learning, with visual and kinesthetic learners benefiting most 

from simulations and interactive tasks, while aural and read/write learners showed limited 

gains. Implications: The study highlights the potential of AI to enhance learning through 

multimodal engagement, but also emphasizes the need for inclusive designs that move 

beyond learning styles toward broader pedagogical frameworks. 
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1. Introduction 
In the last decade, Artificial Intelligence (AI) has increasingly permeated educational research and practice, 

with claims that it can revolutionise personalised learning, formative assessment, and student engagement 
(Holmes et al., 2022; Zawacki-Richter et al., 2023). AI is no longer confined to rudimentary automation but 
encompasses sophisticated applications including natural language processing, adaptive feedback systems, 
multimodal simulations, and intelligent tutoring systems (ITS). However, despite this promise, scholarly debate 
continues regarding the conceptual, pedagogical, and ethical integration of AI in education (Chen et al., 2023; 
Roll & Wylie, 2024). In particular, the use of AI-based tutoring systems defined here as interactive, computerised 
environments that adapt instructional content and scaffolding to learners’ responses in real-time—raises 
important questions about their alignment with established learning theories and their capacity to support 
diverse learner profiles (Luckin & Cukurova, 2023). 

One of the most widely adopted but also heavily contested frameworks in education is the theory of 
learning styles, specifically the VARK model (Visual, Aural, Read/Write, Kinesthetic). For decades, learning styles 
theory has been invoked to justify differentiated instructional strategies, with the assumption that aligning 
teaching methods to a learner’s dominant modality leads to improved outcomes (Pashler et al., 2009; Kukul, 
2024). Yet, recent literature has mounted significant critiques of this assumption, arguing that empirical 
evidence does not substantiate the effectiveness of tailoring instruction solely on the basis of learning style 
categories (Newton & Miah, 2017; Aslaksen et al., 2022). Large-scale reviews and experimental studies suggest 
that while learners may express preferences for particular modes of instruction, there is no consistent evidence 
that such alignment improves academic performance (Kirschner, 2017; Knoll et al., 2021). In fact, perpetuating 
the learning styles myth may risk oversimplifying the complexities of cognition and diverting attention from 
more robust pedagogical frameworks such as cognitive load theory, self-regulated learning, and multimodal 
learning principles (Cuevas, 2020; Coffield, 2023). 
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This tension between the popularity of VARK in educational practice and its weak empirical foundations 
highlights a critical issue: to what extent can learning style taxonomies still provide meaningful insights when 
coupled with emerging AI technologies? Some scholars contend that while VARK lacks predictive validity, it can 
still function as a heuristic for exploring learner diversity, particularly when integrated within multimodal 
digital environments that flexibly support different forms of engagement (Dekker & Jolles, 2023). AI-based 
tutoring systems, with their adaptive algorithms and multimodal delivery capacities, may offer a context in 
which the limitations of learning styles theory are mitigated by richer, more dynamic learning interactions (Chen 
et al., 2022; Lee & Zhai, 2024). 

However, a clear definition of what constitutes an AI-based tutoring system remains necessary. Unlike 
conventional e-learning platforms that provide static content, AI tutoring systems are characterised by their 
capacity to (a) diagnose learners’ current understanding, (b) deliver adaptive scaffolding and multimodal 
representations, (c) engage in interactive dialogue, and (d) monitor learning progress over time (Roll & Wylie, 
2024; Graesser et al., 2023). Examples include systems capable of real-time physics simulations, personalised 
feedback in natural language, and adaptive questioning strategies aligned with a learner’s reasoning trajectory 
(Luckin & Cukurova, 2023). Such systems thus occupy a unique space at the intersection of cognitive psychology, 
pedagogy, and computational modelling. Nevertheless, their integration into pre-service teacher education 
remains limited, particularly in subject domains like electromagnetism, where abstract concepts pose persistent 
learning challenges (Miftah et al., 2024; Dai et al., 2023). 

The challenge of conceptualising electric fields illustrates this pedagogical gap. Physics education research 
consistently identifies electric field theory as one of the most conceptually difficult topics for learners, who often 
harbour misconceptions about vector representation, field strength, and force interaction (Zhang et al., 2024). 
Conventional instructional approaches, such as lectures and textbook-based exercises, often fail to address these 
difficulties due to the abstract and invisible nature of the phenomena (Yeo & Gilbert, 2023). Here, AI-based 
tutoring systems offer significant affordances: real-time visualisation of field interactions, multimodal 
simulations that allow manipulation of charges, and adaptive feedback that can scaffold conceptual reasoning 
(Lee et al., 2023). These features align with the multimodal learning framework, which emphasises that learning 
is strengthened when content is delivered through complementary channels that engage multiple sensory and 
cognitive systems (Mayer, 2021). 

Despite this potential, few studies have systematically examined how AI tutoring systems interact with the 
diverse learning preferences or self-reported modalities of pre-service teachers. This oversight is problematic 
because teacher education is a critical site where pedagogical technologies are not only consumed but also 
modelled for future classroom use (Tondeur et al., 2023). Pre-service teachers’ engagement with AI systems 
may shape not only their own conceptual understanding but also their readiness to integrate such technologies 
into their future teaching practice (Nyaaba et al., 2024). A stronger theoretical framework is therefore needed, 
one that goes beyond simplistic applications of VARK and integrates more robust theories of learning such as: 

a. Cognitive load theory (Sweller, 2020), which explains how instructional design can reduce unnecessary 
processing and optimise schema acquisition. 

b. Multimodal learning theory (Mayer, 2021), which highlights how learners benefit when information is 
presented through complementary channels. 

c. Sociocultural theory (Vygotsky, as revisited in AI contexts), which foregrounds the role of scaffolding, 
dialogue, and collaborative meaning-making (Kozulin, 2022). 

Positioning AI tutoring systems within these frameworks can clarify their unique educational affordances. 
For instance, adaptive AI can dynamically manage cognitive load by pacing information delivery; it can enrich 
multimodal engagement by combining visual, auditory, and interactive representations; and it can simulate 
collaborative scaffolding through intelligent dialogue. Such theoretical grounding not only strengthens the 
rationale for AI integration but also distinguishes this research from studies that rely narrowly on VARK 
categorizations. 

The novelty of this research lies in its attempt to bridge contested theories of learning styles with the 
cutting-edge affordances of AI tutoring systems in a context where conceptual understanding is particularly 
challenging. Whereas prior studies have either critiqued VARK in isolation or investigated AI tutoring without 
attention to learner diversity, this study seeks to synthesise these domains by exploring how pre-service 
teachers’ reported learning preferences interact with AI-mediated multimodal feedback on the topic of electric 
fields. By employing a two-tier diagnostic assessment, the study further contributes methodological innovation, 
as this instrument captures not only content knowledge but also the reasoning processes underlying conceptual 
change (Treagust, 2021). 
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Accordingly, this research positions itself at the nexus of three urgent conversations in education: (1) the 
critical interrogation of learning styles theory in light of empirical evidence, (2) the need for theoretically 
grounded integration of AI in teacher education, and (3) the demand for novel instructional models that address 
persistent misconceptions in complex science domains. Through this integration, the study contributes to the 
design of more inclusive, adaptive, and evidence-based learning environments for future science educators. 

2. Method 
This study employed a mixed-methods approach with a sequential explanatory design, combining 

quantitative and qualitative strands to map the learning styles of pre-service enviromental science education 
and examine their interaction with artificial intelligence (AI) in learning the topic of electric fields. A total of 
seventy-two undergraduate students from the Science Education Programme at the Faculty of Teacher Training 
and Education, University of Jember, participated in the study. The participants were purposively selected on 
the basis of their prior completion of introductory physics courses and their limited exposure to the concept of 
electric fields. 

2.1. Instruments and Reliability 
Three instruments were employed for data collection. The first was the VARK learning style questionnaire, 

adapted to the local educational context. Its internal consistency was confirmed in the present study, yielding a 
Cronbach’s alpha coefficient of 0.81, which indicates acceptable reliability (Tavakol & Dennick, 2011). The 
second instrument was a two-tier conceptual test consisting of ten items designed to assess both knowledge of 
electric field concepts and reasoning ability. The reliability coefficient of this diagnostic instrument was α = 0.76, 
demonstrating satisfactory internal consistency. Finally, semi-structured interview protocols were used to 
collect qualitative insights, and inter-rater reliability for thematic coding achieved a Cohen’s kappa of 0.84, 
suggesting strong agreement. 

2.1.1. Pilot Testing and Instrument Validation 
Prior to the main study, a pilot test was conducted with a group of twenty pre-service teachers not included 

in the final sample. Feedback from the pilot led to minor revisions in wording and structure of the VARK 
questionnaire and refinement of distractors in the two-tier conceptual test. Expert validation was also sought 
from three senior physics education scholars, who reviewed the instruments for construct validity, alignment 
with learning objectives, and appropriateness for the pre-service context. Their recommendations were 
incorporated to ensure both content validity and contextual relevance (DeVellis & Thorpe, 2021). 

2.1.2. AI System: Technology, Features, and Interfaces 
 The AI system utilised in this study was an adaptive tutoring platform developed to support conceptual 

learning in physics. It integrated a rule-based engine with natural language processing capabilities, enabling 
both automated feedback and guided problem-solving. Key features included interactive visualisations of 
electric field lines, dynamic simulations allowing manipulation of charge placement, and embedded formative 
quizzes that adapted difficulty levels according to learner performance. The interface was designed to be user-
friendly, featuring multimodal elements such as drag-and-drop interactive tasks, animation-rich explanations, 
and limited audio narration. Importantly, the system also offered adaptive scaffolding: when students 
demonstrated misconceptions, the AI generated targeted hints or alternative representations (for example, 
switching from abstract diagrams to concrete animations). This ensured that learners’ engagement was 
personalised and responsive to their cognitive needs. 

2.1.3. Research Procedure 
 The research procedure followed a sequential flow to ensure both systematic data collection and 

methodological rigour. Initially, students completed the VARK questionnaire to establish their dominant 
learning styles. Subsequently, they undertook the pre-test of the two-tier conceptual instrument. Following this, 
the AI-based learning activity was administered, during which participants engaged with interactive 
simulations, adaptive tasks, and system-generated feedback. Observations and screen recordings were carried 
out concurrently to capture interaction patterns. Upon completion of the AI learning session, the post-test was 
administered to measure conceptual change. Finally, semi-structured interviews were conducted with twelve 
purposively selected students, representing different learning styles, in order to obtain richer qualitative 
insights into their experiences. 

The flow of the research can be conceptualised as a structured cycle beginning with diagnostic profiling 
(VARK questionnaire), followed by baseline measurement (pre-test), intervention (AI-based learning), outcome 
assessment (post-test), and reflective exploration (interviews). This sequential progression ensured that the 
mixed-methods design captured not only measurable learning gains but also the nuanced experiences of 
students interacting with AI. The scheme of the research procedure is shown in Figure 1. 
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Figure 1. Research Procedure   

2.1.4. Data Analysis 
Quantitative data were analysed using descriptive statistics, paired-sample t-tests, and correlation 

analysis to examine relationships between learning styles and conceptual gains. Qualitative data from 
observations and interviews were subjected to thematic analysis, with triangulation applied to ensure 
trustworthiness. The study adhered to ethical standards established by the University of Jember’s ethics 
committee, with all participants providing informed consent. 

3. Results and Discussion 
This study aimed to examine how different learning styles of pre-service science teachers interact with AI-

based instruction in learning electric field concepts. The quantitative findings indicated a notable increase in 
students' conceptual understanding after the intervention. 

3.1. Quantitative Results 
Quantitative data were collected using the VARK learning style questionnaire and a two-tier conceptual 

test administered before and after the AI-based learning activity. The data were analyzed using SPSS, employing 
descriptive statistics, paired-sample t-tests, and correlation analysis. Below are the detailed findings. 

3.1.1. Distribution of Students' Learning Styles Based on VARK  
A total of 72 students completed the VARK questionnaire to identify their dominant learning style. The 

results of the analysis show the distribution in Table 1 and the diagram in Figure 2 as follows: 

Table 1. Distribution of Students’ Learning Style Based on Vark 
Learning Style Number of Students Percentage 
Visual 18 25.0% 
Aural 15 20.8% 
Read/Write 13 18.1% 
Kinesthetic 14 19.4% 
Multimodal 12 16.7% 
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Figure 2. Distribution of Learning Style 

3.1.2. Conceptual Understanding Before and After AI-Based Learning 
Conceptual understanding was measured using a two-tier test administered before and after learning with 

an AI-based system. Table 2 and Figure 3 show the average results of the post-test and pre-test of students' 
conceptual understanding after learning 

Table 2. Conceptual Understanding Before and After AI-Based Learning 
Statistic Pre-Test Post-Test 
Mean 4.03 7.24 
Standard Deviation 1.71 1.36 
N 72 72 

 

The results of a paired-sample t-test indicated a significant difference between the pre-test and post-test 
scores (t(71) = -15.827, p < 0.001). 

 
Figure 3. Conseptual Understanding Before and After AI-Based Learning 

3.1.3. Relationship Between Learning Styles and Learning Gains  
The analysis of the relationship between learning styles and learning gains in Table 3 and Figure 4 reveals 

a notable variation in the degree of influence among different learning preferences. Students with a visual 
learning style demonstrated a significant positive correlation (r= 0.283, p= 0.017), indicating that they 
experienced substantial improvement in learning outcomes following AI-based instruction. This is likely due to 
the presence of visual elements such as animations, interactive simulations of electric fields, and illustrative 
diagrams, which align closely with the way visual learners process information. Similarly, kinesthetic learners 
also showed a significant correlation (r = 0.305, p = 0.012), suggesting that the interactive features of the AI 
system particularly those allowing direct manipulation and virtual exploration provided a learning experience 
that resonated well with their preference for hands-on, physical engagement in conceptual understanding. 

Table 3. Relationship Between Learning Styles and Learning Gains 
Learning Style Correlation (r) Sig. (p) Interpretation 
Visual 0.283 0.017 Significant positive correlation 
Aural 0.192 0.104 Not significant 
Read/Write 0.096 0.414 Not significant 
Kinesthetic 0.305 0.012 Significant positive correlation 
Multimodal 0.222 0.081 Marginal 
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In contrast, students with an aural learning style did not exhibit a statistically significant correlation with 
learning gains (r = 0.192, p = 0.104). While there was a slight positive trend, the effect was not strong enough to 
reach statistical significance. This may be attributed to the AI system’s limited emphasis on auditory elements, 
such as verbal narration or spoken explanations, which are essential for this learner group. Likewise, students 
with a Read/Write learning preference showed a very low and non-significant correlation (r = 0.096, p = 0.414), 
implying that they struggled to fully benefit from the predominantly visual and interactive content, particularly 
in the absence of detailed written explanations or text-based materials. 

Multimodal learners demonstrated a marginal correlation (r = 0.222, p = 0.081), suggesting that while they 
possess the flexibility to adapt to various instructional formats, the gains they experienced were not as 
pronounced as those whose dominant learning styles aligned directly with the primary modes of the AI system. 
These findings underscore the importance of ensuring alignment between AI-based instructional design and 
students’ cognitive preferences. While AI-enhanced learning environments have proven effective in enhancing 
conceptual understanding, their impact is significantly influenced by how well they cater to individual learning 
styles. For AI systems to support truly inclusive learning, their design must go beyond visual and interactive 
dominance, embracing a more balanced multimodal approach that accommodates the full spectrum of learners. 

 
Figure 4. Relationship Between Learning Styles and Learning Gains 

3.2. Qualitative Findings 
The qualitative findings from interviews and observations of twelve students, each representing different 

learning styles, revealed a number of insightful patterns regarding their interactions with the AI-based learning 
system. Visual learners reported substantial benefits from the presence of interactive visualisations and electric 
field simulations, which helped them intuitively grasp abstract scientific concepts. Kinesthetic learners 
expressed a strong preference for the hands-on elements of the system, particularly the ability to manipulate 
charges and conduct virtual experiments, which offered a dynamic and exploratory learning experience. One 
kinesthetic respondent noted, “The simulation helped me better understand the direction of electric forces. I could 
change the position of the charge and instantly see the effect.” 

In contrast, aural learners appreciated the inclusion of audio narrations and explanations but felt that the 
level of interaction lacked sufficient challenge or depth to fully engage them. For Read/Write learners, the 
experience was less favourable; they encountered difficulties in following the simulations due to the absence of 
detailed written explanations. As one respondent with this preference remarked, “I feel more comfortable when 
there is also a written explanation; sometimes visuals alone are not enough.” 

Multimodal learners demonstrated adaptability, being able to engage with the various features offered by 
the system. However, many still expressed a preference for a balanced combination of textual and visual 
materials, suggesting that while they could manage with the current design, their learning would be further 
enhanced by more varied content delivery. Overall, these observations underscore the need for AI learning 
systems to adopt a more inclusive, multimodal approach one that not only adapts to individual pace, but also 
caters to diverse cognitive preferences to ensure optimal learning experiences for all students. 

3.3. Discusion 
The results of this study show that the integration of AI-based instruction into the teaching of electric field 

concepts has a positive impact on pre-service science teachers’ conceptual understanding, particularly among 
those identified through the VARK framework as visual and kinesthetic learners. These findings highlight the 
potential of AI as a transformative tool in science education but also raise critical questions regarding the 
theoretical assumptions underpinning learning styles, the validity of VARK as a diagnostic instrument, and the 
extent to which the observed gains can be attributed to genuine differences in learner typologies or to the 
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instructional affordances embedded in the AI system. While VARK has long been used as a convenient tool to 
categorize learners into four broad groups visual, aural, read/write, and kinesthetic its empirical validity 
remains contested. Scholars increasingly argue that such frameworks oversimplify the complexity of learning 
processes, and recent studies in educational psychology and neuroscience have suggested that there is little 
robust evidence to support the notion that aligning instruction to specific styles consistently improves outcomes 
(Cuevas, 2023; Kirschner, 2021). Learners are not rigidly confined to a single mode of processing but rather 
display adaptive and flexible strategies depending on task demands, prior knowledge, and context. 
Consequently, while our study found that visual and kinesthetic learners benefited the most, these results should 
not be interpreted as direct evidence for the predictive power of VARK categories. Instead, they might reflect 
how the design of the AI system rich in simulations, diagrams, and interactive activities privileged certain types 
of engagement while underserving others. 

An alternative interpretation of these findings can be grounded in well-established theories of learning 
such as cognitive load theory and dual coding. From the perspective of cognitive load, visualizations and 
interactive simulations are powerful tools for reducing extraneous processing by externalizing complex 
relationships that would otherwise overburden working memory (Sweller et al., 2019). The AI platform’s strong 
reliance on animated representations of electric fields likely supported the construction of mental models for 
all learners, but particularly for those already inclined toward visual reasoning. Similarly, kinesthetic learners 
may have benefited not because of an inherent learning style advantage but because the platform provided 
embodied opportunities for manipulating charges and observing the resulting field interactions. Research in 
embodied cognition suggests that physical or simulated physical activity activates motor pathways that enhance 
conceptual understanding, particularly in science and mathematics education (Kontra et al., 2022). Thus, these 
results might be better understood as evidence of the effectiveness of active and multimodal learning design 
rather than confirmation of VARK’s predictive validity. 

In contrast, the comparatively modest gains for aural and read/write learners could be linked to 
limitations in the system design rather than weaknesses in those learners. The absence of comprehensive 
narrated explanations and detailed textual scaffolds deprived students who prefer linguistic engagement of 
important cognitive entry points. Prior work demonstrates that the integration of text and narration with visuals 
can enhance comprehension by appealing to multiple coding channels and supporting cross-modal 
reinforcement (Mayer, 2020; Fiorella & Mayer, 2021). Without such scaffolding, aural and textual learners may 
have struggled to engage as deeply with the predominantly visual and interactive design. This points to a larger 
issue in AI-enhanced education: the danger of overemphasizing certain modalities at the expense of others, 
thereby limiting inclusivity and equity. 

The results should also be considered in light of several methodological and contextual limitations. The 
first concerns the reliance on the VARK questionnaire itself. As a self-report instrument, VARK captures learners’ 
perceptions of their preferences, which may not accurately reflect their actual learning behaviors or most 
effective strategies (Cuevas, 2023). Moreover, the psychometric reliability of VARK has been questioned, with 
some studies finding inconsistent classification of learners across time and context. Second, the sample size of 
72 students, drawn from a single institution, limits the generalizability of the findings. While sufficient for an 
exploratory study, broader and more diverse samples are needed to confirm whether similar patterns would 
hold across cultural and institutional contexts. Third, the design of the AI system was heavily weighted toward 
visual and kinesthetic features, which may have biased the results by amplifying benefits for certain learner 
groups while failing to provide equivalent affordances for others. Fourth, the outcomes were measured 
immediately after the intervention, leaving unanswered questions about long-term retention and transfer of 
knowledge. Durable learning is essential in science education, particularly when addressing abstract topics such 
as electric fields, and future research should incorporate delayed assessments to examine persistence of gains. 
Fifth, qualitative insights were drawn from only 12 participants, meaning that while valuable, they may not 
capture the full diversity of student experiences. Finally, the study did not account for other moderating 
variables such as prior knowledge, cognitive ability, motivation, or digital literacy, all of which could shape how 
learners interact with AI-based systems. 

Despite these limitations, the study offers important implications for the design of inclusive AI learning 
environments. The uneven gains across different learner groups underscore the necessity of moving beyond 
narrowly defined modalities to embrace a multimodal approach that integrates visual, auditory, textual, and 
interactive elements. Recent developments in multimodal AI, supported by natural language processing, speech 
synthesis, and gesture recognition, suggest that it is increasingly feasible to create platforms capable of 
dynamically delivering content across multiple channels (Zhai et al., 2023; Lee & Zhai, 2024). Rather than 
attempting to match instruction to static learning style categories, AI systems should adopt the principles of 
Universal Design for Learning, which emphasize providing multiple means of representation, engagement, and 
expression (Al-Azawei et al, 2022). By offering learners flexible options for interacting with material, such 
systems can support diverse cognitive needs without confining them to predefined categories. 
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Furthermore, adaptive learning analytics can enable AI to personalize instruction in ways that go beyond 
VARK’s limitations. Instead of relying on self-reported questionnaires, AI can analyze real-time data from 
learner interactions, identifying patterns of engagement and areas of difficulty, and then adjusting the modality 
and pacing of instruction accordingly (Vakili & Dianati, 2024). For example, if a student demonstrates difficulty 
with purely visual materials, the system could supplement these with additional textual or narrated 
explanations. Such dynamic responsiveness ensures that all learners, including those with strong linguistic 
preferences, are adequately supported. This approach shifts the focus from categorizing learners to empowering 
them through flexible, adaptive pathways that align with evolving needs. 

For teacher education, these findings also carry broader implications. Pre-service teachers exposed to AI-
based learning environments that transparently integrate multiple modalities may develop greater awareness 
of their own cognitive preferences and limitations. This metacognitive awareness can be invaluable in their 
future practice, enabling them to design lessons that accommodate diverse learners rather than defaulting to a 
“one-size-fits-all” approach. Encouraging pre-service teachers to critically reflect on the promises and pitfalls of 
AI in education prepares them to implement such technologies responsibly, ethically, and inclusively in their 
classrooms. At the same time, they must be cautioned against uncritically adopting frameworks such as VARK, 
which may reinforce myths rather than advance evidence-based pedagogy (Kirschner, 2021). 

In summary, the results of this study should be interpreted less as confirmation of the efficacy of VARK-
based personalization and more as evidence of the power of multimodal, interactive AI learning environments. 
While visual and kinesthetic learners demonstrated significant gains, these benefits likely reflect broader 
principles of cognitive load management, dual coding, and embodied cognition rather than the superiority of 
particular learning styles. The study’s limitations underscore the need for more rigorous, large-scale, and 
longitudinal research to clarify the conditions under which AI most effectively enhances learning. Nonetheless, 
the implications are clear: to achieve inclusive and equitable outcomes, AI systems must integrate multiple 
modalities, dynamically adapt to learner needs, and align with universal design principles. In doing so, AI can 
move beyond the contested paradigm of learning styles to genuinely support the diverse and evolving needs of 
all learners. 

4. Conclusion 
This study demonstrated that AI-based instruction significantly improved the conceptual understanding 

of pre-service science teachers on the topic of electric fields, with visual and kinesthetic learners benefitting 
most from the system’s reliance on simulations and interactive features. Nevertheless, several limitations must 
be acknowledged. The reliance on the VARK questionnaire as a measure of learning styles presents issues of 
validity and reliability, while the modest and localized sample size limits the generalizability of the findings. 
Furthermore, the design of the AI system, which strongly emphasized visual and interactive elements, may have 
biased the results toward certain learner groups. The absence of longitudinal measures also leaves unanswered 
questions about retention and transfer of knowledge. 

Based on these considerations, several actionable recommendations emerge. First, future AI learning 
platforms should be designed to balance multiple modalities visual, auditory, textual, and kinesthetic ensuring 
that learners with diverse preferences and needs are equitably supported. Integrating narrated explanations, 
detailed textual scaffolds, and multimodal feedback would create more inclusive environments. Second, pre-
service teacher education programs should incorporate explicit training on how to critically evaluate AI-based 
tools, equipping future educators to select and adapt systems responsibly. Third, system developers should 
embed adaptive analytics that continuously monitor learner engagement and performance, allowing real-time 
adjustments to instructional pacing, modality, and feedback. 

Suggestions for future research also follow naturally from this work. Larger-scale and cross-cultural 
studies are needed to test the robustness of the findings across different educational contexts. Longitudinal 
research should explore whether conceptual gains achieved through AI persist over time and transfer to new 
problem-solving contexts. Future investigations might also move beyond VARK to explore other theoretical 
frameworks, such as cognitive load theory, dual coding, and universal design for learning, which may provide 
more robust explanations of learner differences. Finally, the ethical implications of deploying AI in teacher 
education including issues of equity, transparency, and data privacy should be systematically studied to ensure 
that technological innovation aligns with broader educational values. 

In sum, this study highlights both the promise and the challenges of AI-assisted learning in science 
education. While demonstrating that AI can enhance learning outcomes, particularly for certain groups of 
learners, it also underscores the importance of moving toward multimodal, adaptive, and inclusive design 
principles. By addressing its current limitations and building upon its strengths, future research and practice 
can ensure that AI contributes not only to improved performance but also to more equitable and responsive 
educational experiences. 
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